Cautious NMPC with Gaussian Process Dynamics for Miniature Race Cars

نویسندگان

  • Lukas Hewing
  • Alexander Liniger
  • Melanie N. Zeilinger
چکیده

This paper presents an adaptive high performance control method for autonomous miniature race cars. Racing dynamics are notoriously hard to model from first principles, which is addressed by means of a cautious nonlinear model predictive control (NMPC) approach that learns to improve its dynamics model from data and safely increases racing performance. The approach makes use of a Gaussian Process (GP) and takes residual model uncertainty into account through a chance constrained formulation. We present a sparse GP approximation with dynamically adjusting inducing inputs, enabling a real-time implementable controller. The formulation is demonstrated in simulations, which show significant improvement with respect to both lap time and constraint satisfaction compared to an NMPC without model learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Model Predictive Control with Probabilistic Models

Nonlinear Model Predictive Control (NMPC) is a powerful control framework, which strongly relies on a good model of the system dynamics. In the case, such a model is not available apriori, non-parametric regression using Bayesian regression or Gaussian Processes (GPs) have been shown promising in inferring the dynamics from collected data. An advantage of Bayesian methods and GPs over other reg...

متن کامل

Explicit stochastic predictive control of combustion plants based on Gaussian process models

Energy production is one of the largest sources of air pollution. A feasible method to reduce the harmful flue gas emissions and to increase the efficiency is to improve the control strategies of the existing thermoelectric power plants. This makes the Nonlinear Model Predictive Control (NMPC) method very suitable for achieving an efficient combustion control. Recently, an explicit approximate ...

متن کامل

Explicit output-feedback nonlinear predictive control based on black-box models

Nonlinear Model Predictive Control (NMPC) algorithms are based on various nonlinear models. A number of on-line optimization approaches for outputfeedback NMPC based on various black-box models can be found in the literature. However, NMPC involving on-line optimization is computationally very demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient on-line c...

متن کامل

Optimization-Based Autonomous Racing of 1: 43 Scale RC Cars

This paper describes autonomous racing of RC race cars based on mathematical optimization. Using a dynamical model of the vehicle, control inputs are computed by receding horizon based controllers, where the objective is to maximize progress on the track subject to the requirement of staying on the track and avoiding opponents. Two different control formulations are presented. The first control...

متن کامل

A closed-form model predictive control framework for nonlinear noise-corrupted systems

In this paper, a framework for Nonlinear Model Predictive Control (NMPC) that explicitly incorporates the noise influence on systems with continuous state spaces is introduced. By the incorporation of noise, which results from uncertainties during model identification and the measurement process, the quality of control can be significantly increased. Since NMPC requires the prediction of system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06586  شماره 

صفحات  -

تاریخ انتشار 2017